Disclaimer: The information posted here may not be accurate as it is the
opinions of other Nova owners and I have no way to validate its accuracy or correctness....If
any information posted here is from "your site" and you wish it removed,
Just let me know and I will do so.....Thanks.
Engine For '69 the special high-performance L78 396 engines
featured an 800-cfm Holley carburetor, a solid-lifter camshaft, big-port cast-iron
heads, an 11:1 compression ratio, a Tufftrided steel crankshaft, and forged pistons.
Back in the day these cars didn't need a lot of throttle to barbecue the stock,
skinny bias-belted tires, in any of the four gears. The 50-state A.I.R. system
is packed away. The L78 in 70 was different than the 69. The intake was a
low rise, and some had a very hard to find dual snorkle air cleaner. None had
lower than a 3:55 rear gear, and an M20 was what you got unless you ordered a
21. Stock carb was a 780cfm dual feed vacum secondderies. Stock L78 396s ran
780 Holleys, they could tach up about 7200 rpms
*********************************************** Modified
396: Use the stock crank (preferably forged if you want to really spin
it). Use stock/rebuilt truck rods with ARP bolts - or go aftermarket - your choice.
Studded 2 bolt or 4 bolt make no difference as long as the crank assembly is balanced
and th tolerances are correct. Oval port heads with stock valve sizes are also
fine-just a good port cleanup and preferably use high flow undercut stem valves.
A 396 motor comes alive with the cam selection. Only way to do it is a solid roller.
Depending on your trans/rear (mild 396 motors needa 3.73, hot 396 motors need
a 4.1-4.3 or more if you have the guts. These are based on 27-28" tires).
Cam specs in the general range of 240 @ .060, lift in the .620-.650 range. Ideal
LSA/ICL for the cam is 110LSA/104ICL. All 3.76" stroke motors like an advanced
cam. Pick the cam you want, then pick the pistons to get the correct CR. Run small
tube headers (1.75" primary x 3" collector). Dual plane intake - ie.
Performer RPM. This will be a 7000 RPM motor. ***********************************************
FRONT SPRINGS: Your local CarQuest or O'Reillys
Auto Parts should be able to fix you up with NEW Moog springs for your "Classic"
Nova. Probably about $65-75 the pair! The 75-79 Nova shares axle and mounting
dimensions with the 70-81 Camaro and F-bird, 68-74 Nova shares with 67-69 Camaro.
I've done the same swap you are thinking of--79 Trans Am rear into 76 nova, no
problems at all. 12-bolt truck would be a poor choice, as you would need
to move perches and get aftermarket axles, and they have a smaller diameter pinion
shaft. Any advantages to keeping sbc springs in the front with a bbc in
the car? Pros and cons to those that have tried it each way? FRONT SPRINGS....SBC....Your
ride height will be lower for that low rider stance that is currently popular
(pro). Your suspension travel will be limited by that low rider stance that is
currently popular (con). You save money on springs (pro). It will cost you money
in shock and tire wear (con). Ride will be harsher as spring rate of stock springs
are progressive and the soft part is gone (pro or con depending upon how you like
your car to ride). You will win every burn out contest because all of the weight
is over the nose of the car (pro). You will not obtain as much weight transfer
if you should ever decide to participate in a contest of acceleration (con).
SUSPENSION coil springs, 1934-2007, standard, custom made. Coil Spring Specialties
LLC, PO Box G, 632 W Bertrand, St Mary's, KS 66536, 785-437-2025 or coilsprings.com
Big Block Crossmember: The small block and big block
cross members look the same. The difference is the big block cross member and
frame mounts place the engine and transmission forward and to the passenger side
of the car. This allows the proper clearance at the firewall for the distributor,
also between the exhaust manifold and steering box. Year
1969 Frame mounts: The frame mounts for the 396 big block in 1969
should be as follows: Drivers Side: 3980941 Passenger Side: 3980942 Motor
Mounts: 3990918 (both sides) Note.....Frame mounts for 1968 are wider.
3982307
and 3964886 frame mounts - year 1971-72: One mount has an oval hole where
the motor mount cross bolt slides through to bolt the engine side mount and the
other mount has a perfect hole and is not oval. Which side is the drivers side-pass.
side?. The brackets have part numbers - 3982307,3964886. Motor Mounts: 3990918
(both sides). BB FRAME BRACKETS Here are
measurements of BB Frame brackets from "phel69" a Team Camaro forum
member. "These are the heights of a set of big block brackets in a car
I have. 1. Driver's side is 2.5 inches from base to the top of the bracket.
It measures 1.75 inches from base to center of the bracket bolt hole. It is GM
part # 3950113. 2. The passenger side bracket measures 2.0 inches from the
base to the top of the bracket. It measures 1&3/8 inches from the base to
the center of the bracket bolt hole.This is GM part # 3950114. If
there is ANY gap between the SIDES of your motor mounts and the frame stands,
you have the wrong motor mounts. The correct stock interlocking
type motor mount for a '69 big block and 350/302 is the Anchor 2283.
They are different for a BB. Then just get the engine mounts for a 69 or 70 nova
with BB. The frame mounts are what your engine mounts will bolt to in the frame.
On your radiator support look at how it is cut out on the passenger side, then
look at the driver side and you will see where to make the cut. The BB crossmember
is different too. The BB frame stands move the engine to the pass side a little.
I have read that you can oblong the holes on a SB one to work. The Z bar is also
longer on the BB. The BB crossmember is different too. The BB frame stands
move the engine to the pass side a little. I have read that you can oblong the
holes on a SB one to work. The Z bar is also longer on the BB. I know of a
guy (friend of friend) who did a bb swap that had almost the same list of problems.
It turned out in that he had installed the bb frame mounts incorrectly. He had
the left on the right and the right on the left. From what I understand they can
be bolted up on the wrong side??? He lifted the motor and swapped the mounts and
then had no problems. Short one is on the passenger side. You will need to
get the BB frame mounts so the engine sits in there right. The taller frame
mount goes on the driver side (left). Just did this swap on a 68 and encountered
no problems. The SB frame mounts will make a BB sit high, and also will not
offset the motor to the passenger side as the factory did (to clear the big Saginaw
power steering box) You really need the frame stands and mounts, header fitment
becomes impossible otherwise. Big-blocks also got a different trans crossmember,
so the trans mount is also located a little to the right, to match the motor mounting.
'67-'69 Camaros use the same subframe as your car, so you can use a Camaro crossmember.
If you plan to use the T-350 with a BBC, you'll need to use a big-block manual-transmission
crossmember. Big-block cars never got a T-350 from the factory, only a T-400,
but the T-350 will mount to the same holes that a stick-shift does. Look at the
bottom of your current crossmember and notice that the cutout where you find the
trans mount bolts is oval-shaped. On the BBC crossmember, that cutout is more
squared-off. You might be able to modify yours to work, if you can't find the
BBC unit. Here's a link to a new repro one: http://rickscamaros.com/cgi-local/S...p.htm?E+scstore
(click on transmission, then click on crossmember down at the bottom)
The B.B. mounts make the engine sit lower and over to the right(pass side)...Headers
wont clear the streeing box with the S.B mounts. Big-blocks also got a different
trans crossmember, so the trans mount is also located a little to the right, to
match the motor mounting. '67-'69 Camaros use the same subframe as your car, so
you can use a Camaro crossmember. If you plan to use the T-350 with a BBC,
you'll need to use a big-block manual-transmission crossmember. Big-block cars
never got a T-350 from the factory, only a T-400, but the T-350 will mount to
the same holes that a stick-shift does. Look at the bottom of your current crossmember
and notice that the cutout where you find the trans mount bolts is oval-shaped.
On the BBC crossmember, that cutout is more squared-off. You might be able to
modify yours to work, if you can't find the BBC unit. Buy hooker regular
competition headers for the swap.These headers offer the best fit.Many smaller
tube headers are a more universal design that fit multiple chassis,but dont fit
any one chassis all that well.The hooker headers cost a bit more,but of you ever
had to change the starter or oil filter,you will appriciate how correct they fit.Good
luck. Motor Mounts: If there is ANY
gap between the SIDES of your motor mounts and the frame stands, you have the
wrong motor mounts. The correct stock interlocking type motor mount for a '69
big block and 350/302 is the Anchor 2283. New
motor mounts ....the ones you'll need that will stand up to the HP & torq
of a RAT motor, they are urethane, made by prothane motion control cost $59.95
for the pair part# PTP-7-505-BL from summitracing.
Polyurathane
Motor mounts - Tall & Narrow Type, available in 2 finishes: #3.1117
has a zinc finish #3.1118 has a chrome finish See diagram. Inside Width-
2 3/8" Height Base to Bolt Center- 2 3/16" Replaces O.E. part
numbers: 3962740, 3990918, 3962748
Whats the easiest
way to remove the pilot bearing from the end of the crankshaft? Fill
the pilot bushing with wheel bearing grease. Drive something that fits snug in
the pilot bushing. It should force the bushing out. You will need to fill up the
hole a couple times. It makes a mess but it works well. The
cleanest way is to run a coarse thread tap in there. When the tap bottoms on the
crank, keep turning it. It'll jack the bushing right on out. I think it's 5/8".
Or, you can run an old lag bolt in there and just pry the bushing out after the
bolt grabs the bushing.
Pilot
bearing - Dialing in the bellhousing: If the bellhousing mating surface
at the back of the engine is 100% true, meaning, the flat surface is square with
the center of the crank flange. And there is no core shift of the block, and the
bellhousing is 100% true, the trans input shaft pokes though all of that and lines
up into the pilot within .005" you are good to go.. Then when you bolt
the belhousing to the back of the block, and the trans to it, the input shaft
will line up within .005" true to the cank flange, and fit nice into the
pilot bearing, wehteher bronze, or needle. Well, if all the stars, and moon
line up, you are OK. If not, the input shaft will be off register, and not slide
into that pilot to 100%", but you will never know, cause even off, it will
go in, jiggle jiggle, we have all done it. So, to fix, or line that input
shaft perfect to the hole in the crank, you have to use a dial indicator to line
it up. Lakewood makes offset dial pins that you put into the blaock, in place
of the factory line up pins. They are offcentrick, in that once the pins are in,
you can secrew them, so they move the bell left right up down. With a dial insdicator
in plce in the bell hole and the crank, you dial the pins, or screw them back
and forth, till you get the dial indicator reading true. So, the block can
be off a tad, or the bell, or worse, both. In the case of a Tremec, they recommend
.005". If you are not square poking into that needle bearing sap, out
the needles come. If you are bonding on a pilot, you can run for a long time,
but always have clutch engagement issues, the clutch hangs up in neutral, and
lots of real buggie, hard to diag problems. One the pilot if Bronze wears real
bad due to this, the engagement issues seem to get better, but then you have worn
the pilot to the point where the input shaft does not have support. I have seen
pilots oval, or almost worn right out. When this happens, with no shaft support,
you can ( will ) wear the front trans retainer bearing. __________________
ENGINES: All '70-'72 454 motors (LS5 and LS6) came with a forged crankshaft.
The LS5 had 2-bolt mains and the LS6 had 4-bolt mains. The 325 HP 396 (L35),
and the '70-'72 402 (LS3) came with a cast crank and 2-bolt mains. The 350 HP
396 (L34) came with a forged crank, and is usually a 4-bolt block, but may possibly
come as a 2-bolt block also. All 375 HP 396's (L78 and L89) came with forged cranks
and 4-bolt mains. GEAR RATIOS - TRANSMISSIONS:
Just remember, you don't need a steeper gear if you have an OD tranny, you can
actually run a lower rear end gear than you would with a 3 speed auto. The 1st
and 2nd gear of an OD tranny are much steeper than a 3 speed. So you can run a
much lower rear end than you ever could in a 3 speed, and still have the same
launch as a 3 speed with a steep gear all the while benefiting from the OD by
having great highway driving also.
Basically, you put a 3.08 gear in a
3 speed, you will have lackluster launches and OK highway driving. You put that
same 3.08 rear end in a car with a 4speed auto, and you will have great launches
and SUPERB highway driving. For first and second gear, and 3.08 rear end with
a 4 speed auto will feel like 1st and 2nd gear of a 3.73 rear end in a 3 speed
auto. Its all because of these "final drive" ratios that you will
see at the axle: __3speed auto with 3.73_____ 4 speed auto with 3.08
1st gear___ 9.40______________________9.42 2nd gear___5.67______________________5.02
3rd gear ___3.73______________________ 3.08 4th gear ___NA _______________________2.16 Final
drive ratio is the multiplication of the trannys gear and the rear end. The first
gear ratio of a 350 trans is 2.52. Multiply 2.52 x 3.73 and you get 9.40 as a
final drive ratio at the axle in first gear. The first gear of a 700r4 is 3.06.
Multiply 3.06 x 3.08 and you get 9.42, which is darn near identical to the final
drive ratio of a 350 trans with a 3.73 (9.40 vs 9.42) What that means is
that your 4 speed auto with a 3.08 rear will perform just like a 3 speed auto
with a 3.73 in first gear because the first gear final drive ratio numbers are
almost identical. In second gear, the 4 speed auto with 3.08 will feel real close
to a 3 speed auto with a 3.73. And 3rd gear in the 4 speed gives you a straight
up 3.08 rear, and in OD, its just like being in 3rd gear with a 4 speed with a
rear end gear of 2.16!!! Major MPG!!! BUT, Rex, your 3.73 rear end with
an 2004r trans in 4th gear would work out to be like having a 2.50 rear end. Still
great highway MPG and low RPMS. 1st and second gear would be similar to a 4.10
with a 350 tranny. REAL quick off the line. I'm not trying to tell anyone
what to do, I'm just trying to help by explaining what I've learned recently.
I used to think that the 4 speed autos would let you run a steeper rear end gear
and not kill you on the highway. But in reality, with a 4 speed auto you don't
need to run a steeper rear end gear for racing because the 4 speed auto already
has steeper gears inside of it for you for 1st and 2nd. That allows a lower rear
end gear to be installed, and really helps out on the long hauls. More
on transmissions here AIR CONDITIONING:
The 375 horsepower 396 and the 450 horsepower 454 could NOT be ordered with air
conditioning. The main reason was that the air conditioning compressors were not
suited to the high-rpm nature of the solid-lifter engines. A secondary reason
was that the demands of air conditioning on these solid-lifter motors could cause
them to overheat if left idling too long with the air conditioning on. Chevy
Production Big Blocks: The Chevy big block was introduced in 1965
with a 396 cid Mark IV engine developed from the 1963 Datona mystery engine. The
engine was basically developed as an answer to the highly successful GTO with
its 389 cid engine introduced in 1964. The 396 was first offered in the Chevelle
at 375 HP, in the full size Chevy as 325 and 425 HP versions and in the Corvette
with up to 425 HP. In 1966 the 396 was bored out to 4.250" producing a 427
cid engine. The 427 was offered in the 1967 Impala SS rated at 385 HP and in the
Corvette it was first offered in 1966 and was uprated with 3-2 bbl carburetors
to 435 HP for 1967. In 1967 the L88 427 was also provided in approximately
20 Corvettes with an advertised HP of 430 but actually producing in excess of
550 HP. The L88 required minimum 95 octane gas to avoid possible damage to the
engine and was meant to be strictly for racing. 1970 saw introduction of a stroked
427 resulting in a 454 cid engine. The 454 was offered in the 1970 Impala, Chevelle
SS, El Camino SS and Monte Carlo SS in a 360 HP version and in the Chevelle and
El Camino SS in a 450 HP version. The 1970 Corvette LS-6 was offered with the
390 HP 454 cid engine. 1970 also ushered in the 402 cid engine which was also
known as the 396 in some Chevys and the big block 400 in others. In the 1970 Camaro
SS, Chevelle SS and Nova SS the 402 cid engine with 375 HP was known as the 396
and the cars carried the 396 badge. From 1970 to 1972 the 402, 454, 465 and 495
cid engines were introduced. The short big block V8 has a deck height (centerline
of crankshaft to cylinder deck measured along the centerline of the bore) of 9.80"
and a height (centerline of crankshaft to top of engine along the center of the
V) of 10.75". Cylinders are spaced on 4.84" centers on each bank and
the centers of cylinders on the two banks are offset to accommodate the two connecting
rods on each crank journal. The big blocks have been produced in 3.935",
4.096", 4.125", 4.250", and 4.440" bores and strokes of 3.47",
3.76", and 4.00". Over the years from 1965 to 1995 the big blocks were
offered in nine different displacements from 366 cid to 502 cid. Chevy
made big-block crankshafts in two different strokes. The 396, 402, and the 427
all use a stroke of 3.76 inches. These are internally balanced crankshafts. The
454 uses a 4-inch stroke and is externally balanced. All the main-bearing journal
diameters for the Mark IV big-blocks are 2.7482 to 2.7492 inches, with the rear
main-journal diameter at 2.7478 to 2.7488 inches. The rod bearing?s journal diameters
measure 2.1988 to 2.1998 inches, making the crankshafts interchangeable.
There are two different types of big-block crankshafts, cast or forged. You can
tell the difference by the parting line on the crankshaft throws. The cast crankshafts
will have a thin parting line where the two halves were joined to make the complete
crankshaft, while the forged crankshaft will have a wider parting line. The 427
Corvette crankshafts are all forged steel. Heads:
open chambers have bigger combustion chambers (118 to 123 cc) and tend to flow
better due to unshrouded valves and slightly larger oval ports. closed chambers
have smaller chambers (100 to 112cc) Closed chambers were needed to get
the compression up on the smaller 396, 402, and 427 engines. A 454 can build compression
with open chambered heads using only modest domed pistions due to the larger displacement
of the 454. Most 396. 402, and 427 replacement domed pistons are designed
to work with closed chambered heads. And 454 domed pistons are set up for open
chambered heads. The "good Oval Ports" (049 and 781) will flow
as well as the rectangle ports up to 0.550" lift. And in most cases, the
ovals will out perform the rectangle ports especially if a little head work is
done on the ovals. Just look for 049 and 781 casting numbers on the heads before
buying. Open chamber heads flow a little better than closed due to less
material around the valves....the number you are looking for is the casting number
under the valve cover. Look at the last 3 numbers in the casting number, .......781,
......049. I recently had some bigger valves install in a set of stock 402
heads and did a little bowl work. The heads flowed 250 cfm on the intake at 0.500"
and 199 cfm on the exhaust. Should be enough for 500hp. The stock 402 heads you
have might be enough with some modifications. On a 396 CI engine, I do not
see were this thig could make any compression at all. An open chamber, or chamber
of over 110 cc's can't make any compression in a small displacement BBC. Gotta
get those bad boys down under 100. Early high perf closed chamber heads like
201's are being cut down to obtain around 90 cc's and being used on 454's with
flat tops. We would never consider this size chamber in a SBC 400 right? Absolutely
not, So why would we consider this in a small displacement BBC? We would not.
Oval port would be the way to go, simply because a rectangle port has a larger
port and will stall the air entering the cylinder. This larger port will be too
large for a small displacement engine. Oval port is a wise choice, and your
combustion chamber will dictate your compression ratio. Now I am assuming a .040
head gasket and a flat top piston with valve reliefs. Domes, zero deck heigth,
and a thinner head gasket will all contribute to greater compression. Since
you are gonna run this on pump gas, you will need to keep a reasonable ratio,
but I get away with over 10.5:1 on a big, big block chevy on pump gas and 32*
of timing. FWIW, I run a 540 CI BBC with AFR 357 heads and these have a 119
cc combustion chamber. Carb Jets - L78
Also note that the 427CID/430HP motors used a stager jetting set-up. This tuned
for a better fuel to air ratio for long and short runner divided plenium Hi-riser
intakes. The factory reccomended set-up is as follows... Left Front Jet
#78 Right Front Jet #74 Left Rear Jet #80 Right Rear Jet #82 Now
keep in mind that with headers or cam you will need to richen these jets up a
size or two or three. Change all jets up or down by the same numerical size...(All
up 1 size or all up 2 sizes or all back down 1 size ect). Keep the stager sizing
the same. The engineers spent a little more $Bucks tunning these big guys
and the L78's and LS6's can benifit from these fine tunning tricks. Reading
spark plugs will be a big help in getting it right. My L78 runs much better
and I get a much more consistant read on my plugs with the staggered jet set-up.
CARB TRICK: My neighbor runs a 70 SS 396.
12.5-1s, solid lift .629 lift cam, headers, Holley strip dominator, high stall
converter and 3.73s. Engine has a nice idle to it. Feels real strong. He has a
950 Holley on it currently, but seems to run very rich at an idle. The rear bumper
gets sooty and your eyes tear like crazy. I let me borrow my 750 double pumper
and it seems to run much better with the smaller CFM.....I have a feeling that
the 750 might be too small for his application though. And the 950 seems too big
to me. Any big block Chevy guys here that can enlighten me on what a 396 likes
as far as CFM, what sort of jets/ power valve I should run etc? He
needs to put a .015 wire in the idle feed restrictor to eliminate the fat idle
and mid range condition that most holley carbs have. I learned this first hand
by using the innovate LM-1 air fuel ratio meter this summer, it is the only way
to clean up the idle. You wil be amazed at what this does to the idle and crusie
air fuel ratio. Most guys try and rejet to get it to lean out at idle. Look at
an exploded view of a holley metering block to find out exactly where the brass
idle feed restrictors are located (to hard to describe here), bend one end of
the wire and the gasket will hold it from moving, you can always take it out with
no permanent damage. .015 wire can be purchased at hobby shops for 3 bucks for
12 feet, you need 1 inch! Only put the wire in the primary metering block unless
you have a four corner idle carb, then do both metering blocks...you wont even
need 1 inch, the bend only stops it from going in to far, you will see how long
it needs to be once you get the metering block apart. the gasket then goes on.
You will be amazed at the hole shot improvement!
Some
History of Nova 1968 Chevrolet, conforming with
the popular muscle car formula of a relatively long hood and a short rear deck,
introduced the 1968 Nova and launched itself right into the hearts of those who
wanted a subtle, yet effective street stomper. Small SS badges on the grille and
between the rear taillights were the only tips that this was anything but granny's
grocery getter. The 1968 Nova was the first of its kind to receive an infusion
of big-block power. Only two big blocks were assigned to the Nova - the L34 350
horsepower (234 built), and the L78 375 horsepower (667 built). Because of their
obvious rarity, they are highly sought after today by Nova enthusiasts. The
L78 was doing well in the NHRA manual stock classes since its introduction in
April of 1968. Fred Gibb was a drag racer and Chevrolet dealership owner so he
convinced Chevrolet performance engineer Vince Piggins to install the TH400 automatic
transmission in L78 Novas so they could compete in the NHRA automatic classes
also. NHRA required at least 50 cars be built and available to the general public
before they would recognize them as stock for the automatic class. The 50 L78's
with the TH400 (COPO 9738) were built during the first two weeks of July 1968
and delivered to Gibb's Chevrolet dealership in LaHarpe, IL, on or before July
15, 1968. 1969 Powering the base 1969 Nova Super Sport
was a 300 horsepower 350 incher (up five horsepower over the previous year) that
could be had for the first time with a three-speed Turbo Hydromatic transmission.
The 350 was revised internally, too, with stronger main bearing bulkheads and
caps that were retained with four bolts rather than two. News of the L78 Nova
combination traveled fast amongst the street savvy Bow-Tie believers, and production
was way up over the previous year with 5,262 of them being unleashed on the otherwise
unsuspecting public. Road tests of the L78 Nova showed it had the right stuff
for doing battle on the boulevards. Even with skimpy E-70 tires and a 3.55 gear,
mid 14's at more than 101 mph were easily attainable. Some tuning, headers, a
4.10 gear and more tire would put the Nova in the mid to low 13's. 1970
Nova fans are sure to lament 1970 as the last year for the Rat-engined compact.
When it came time to appease the ever-tightening requirements of the insurance
companies and government horsepower Gestapo, the Nova was the first on the chopping
block. Even so, its final year with big-block motivation
under the hood is one to be well remembered. The big-block was certainly nothing
new to the Nova lineup, having been introduced as a factory option when Chevy
brought out the current body style on 1968. The hot setup was the L78 version
of the 396, churning out 375 very strong horses. Now in its third year of production,
the L78 Nova wasn't the well-kept secret that it once was and each passing year
saw it produced in more prolific numbers. As in previous years, the hottest 396
outnumbered the still respectable 350 horsepower version, and in 1970 it accounted
for 3,765 units compared to 1,802 Novas delivered with the "smaller"
of the two big-blocks. Mechanically, the L78 engine remained
much the same as in the previous years, the only exceptions being an slight overbore
(to actually displace 402 cubic inches) and a new intake manifold. While it still
mounted a Holley carb, the intake was reconfigured to clear lowered hood lines
on other Chevrolet models. And while the Nova still had more than adequate hood
clearance, the smog certification for the L78 was completed with the new "low-rise"
intake in place. Of course, the base powerplant for the SS Nova was a very capable
300 horsepower 350 small-block, especially when you consider its 3300 pound weight.
In stock form, the SS 350 Nova was good for respectable 15 second clockings while
the 375 horsepower big-block version was coaxed into the 13's quite easily. Anyone
but the most ardent Nova fancier would have an extremely difficult time discerning
between the 1969 and 1970 versions; a slight taillight revision (larger lenses
with the backup lamp moved to the middle of the lens) is probably the most evident
clue. Super Sport insignia was still found on both the grille and rear cove areas
(along with a blacked-out treatment), but that's about it. The downplayed visuals
made the Nova a sleeper in the truest sense of the word and undoubtedly account
for its popularity amongst the serious street runners. But they would have to
find a new favorite for the coming year; the big-block Nova would be out of the
performance picture for 1971. In fact, 1971 would bring about some tremendous
changes for the performance enthusiast - none of them for the better. Unquestionably,
1970 will forever be regarded as the high point of Nova (and Chevrolet) performance.
OIL:
Veno - Tech Team Veno There are
3 type of synthetics, group 3, 4 and 5 .. Group 2 oils are Valvoline VR1 and Penzzoil
GT performance, shell Rotela T Group three oils are Crude refined to group
2 oils then bombarded with hydrogen peroxide to strip off extra Oxygen. atoms
to create a group3 oil.. like castrol GTX, Group 4 and 5 oils are 100% manufactured
oil... group4 and 5 oils are call PAO's polly alpha olefin's true man made oil...
like Mobil1 Oils suitable for breakin
..that are available.
with enough Zinc and Phophorus.. OILS LISTED BY ALPHABETICAL ORDER NOT BY QUALITY
or quantity of content.
Brad penn break in oil grp2 Joe Gibbs break
in oil grp2 Pennzoil GT performance. All weights. grp2 Shell Rotela T
30wt, 40wt, 15W40wt. grp2 Starbright 30Wt grp2 Starbright 40Wt (pending)
grp2 Valvoline VR1.. all weights grp2 . I like the Rotela because
of the extra dispersant's and detergents
it creates a higher viscous
and will suspend small particles I also like the StarBright because of the 1600ppm
of zinc and is as cheap as Rotela OILS suitable for street High performance
use with enough Zinc and Phosphorus for flat cams and High spring rates. Up to
150lbs seat pressure. Brad Penn all weights grp2 Castrol GT 20W50
for older cars grp?? Champion XPS 20W50 grp3 syn Joe Gibbs oils grp??
Mobil1 15W50 gold cap and silver cap. grp4 syn Mobil1 Turbo diesel truck grp4
syn Mogil1 racing grp4 syn Pennzoil GT 25W50 grp2 Royal Purple racing
oils syn Shell Rotela T 30wt, 40wt, 15W40wt. grp2 Quaker State Q horse
power 10w60 only grp 3 syn Valvoline VR1 all weights grp2 TRACK/RACE
only. Brad Penn all weights grp2 Champion XPS 20W50 grp3 syn. Joe
Gibbs oils grp?? Mobil1 racing grp4 syn Pennzoil GT all weights grp2
Royal Purple racing oil all weights grp4 syn Quaker State Q RACING all weights
syn
Valvoline VR1 all weights grp2 Valvoline synthetic racing all weights grp?
Valvoline conventional NSL all weights grp2 Pour on top additives to
boost zinc ZDDPLUS, GM EOS, CRANE CAMS BREAK IN, COMP CAMS BREAK IN
|